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An Analysis of a Hybrid-Mode in a Twisted
Rectangular Waveguide

HATSUO YABE, MEMBER, IEEE, AND YAsuTO ~llsHIAKE, FELLOW, IEEE

Abstract —Anal@c expressions of electromagnetic fields for the domi-
nant hybrid-mode in a twisted rectangular waveguide are obtained. The

fields exactly satisfy the boundary conditions on the guide walls in a
helicoidlal shape.

By e~panding these expressions for the fields in terms of the eigenfnnc-

tions of a straight waveguide, the hybrid-mode is found to be composed of a

fundamental TEIO -mode component, accompanied with TEOl, ~ 21,~zl,

and TEm modes, as successive higher order components. The result of the
modaf power cafcufation reveals that there exists a frequency at which the

transmitting power carried in the cross-polarized TEOl -mode component
just vauishes.

As a liniting case of the twisted waveguide, fields in a twisted strip line
are discussed also, and the existencq of a propeller-like equiphase surface
is shown.

I. INTRODUCTION

I N 1955, Lewin [1] published a paper on the analysis of

the twisted waveguides and, more recently, he also

discussed the degeneracy probIem in twisted square wave-

guidm [2]. Although the first-order field expansion was

obtained in the process of Lewin’s work [1]–[4], the electro-

magnetic fields were assumed to be of the TE-mode type

whose electric field lies entirely on the plane perpendicular

to the guide axis. It should be mentioned, however, that the

TE-mode fields do not exactly satisfy all the boundary

conditions throughout the perfectly conducting guidewall

surfaces in helicoidal shape.

Thk paper is concerned with a boundary value problem

of the twisted waveguide. The exact boundary conditions,

in terms of the local oblique base vectors, are presented in

Section II. The analytic expressions for hybrid-mode fields

that exactly satisfy the boundary conditions are given in

Section III. The dominant-mode fields of the hybrid type

obtained here are rather involved. The mode fields are

expanded in the form of a modal series in Section IV.

Furthermore, electromagnetic fields in a twisted strip line

are also discussed in Section V as a limiting case of the

twisted rectangular waveguide.

II. BOUNDARY CONDITIONS

A uniformly twisted rectangular waveguide in fixed

Cartesian coordinates (x, y, and z) is illustrated in Fig.

l(a). Focusing our attention on the helicoidal wall surfaces,

we intend to find the equations for these boundary surfaces

as simply as possible mathematically, We introduce here

the twisted coordinates (X, Y, and Z) in which axes X and
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Fig. 1, Twisted rectangukw waveguide and coordinate systems. (a)
Twisted coordinates (X, Y, and Z) and fixed Cartesian coordinates ( x,
y, and z) having the same origin O. (b) Locaf oblique base vectors at a
point P.

Y rotate simultaneously with the rotation of the cross

section. They are related to the fixed Cartesian coordinates

by the equations

X=xcosaz+ysinaz

Y=–xsinaz+ycosaz

Z=z (1)

where a is called the twist constant in rad\m [5]. In terms

of the twisted coordinates, the four helicoidal surfaces can

be expressed in simpler form

x=+, for narrow walls

Y=+, for wide walls (2)

where a and b are cross-sectional dimensions of wide and

narrow walls, respectively.

Fig. l(b) shows two sets of the local oblique base vectors

known as the unitary and the reciprocal unitary vectors

associated with the point P. The unitary (ax, a y, and a z)

are related to the unit vectors (i, j, and 4) of the Cartesian
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coordinate system by

ax = icosaz + jsinaz

aY = — isinaz + jcos az

az=–ayi+axj+k. (3)

It must be noted that the unitary vectors are not neces-

sarily of unit length [6], as in the case of a ~ in (3). The

reciprocal unitary vectors (a ~, av, and af ) are defined in

order that the following orthogonality relations may hold:

ag=a YXaz ax=aq Xa{

aq=az Xax aY=ar Xat

ar=ax XaY az=aCXav. (4)

Let the guide walls be of infinite conductivity. Then, the

electric- and magnetic-field vectors E and 1? must satisfy

the following boundary conditions:

Exat=O H.at=O, for narrow walls

Exav=O H.av=O, for wide walls (5)

where the base vectors a ~ and a ~ are, respectively, per-

pendicular to the narrow- and wide-wall surfaces.

In order to obtain more convenient expressions of these

boundary conditions, we resolve the vector E into its

covariant components ( E$, En, and Ef), and the vector H

into its contravariant components ( Hx, HY, and Hz).
Then we have

E = Etat + Evaq + Ecu{

H= Hxax+HYaY+HZaz (6)

and they are also related to the Cartesian

the following equations:

Et = Excos az + EYsin az

Eq = – Er sin az + EYcos az

El= – ayEx + axfiY + E,

components by

(7a)

Hx = Hxcos az + HYsin az + aYH=

HY = – HXsinaz + HVcosaz – aXHZ

HZ= HZ. (7b)

Substituting (6) into (5), we can finally obtain the

boundary conditions in terms of the field components as

follows:

EV=E{=O HX=O, forX=t~

Et= Ec=O HY=O, for Y= *~. (8)

It must be noted here that the field components in these

expressions are represented on the basis of the local ob-

lique base vectors, and E= and Hz components do not

vanish on the guide walls.

III. PERTURBATIONAL-FIELD SoLurIoNs

ln order to obtain the field solutions for twisted wave-

guides of a hybrid type, we start from Maxwell’s equations.

At first. we ex~ress Maxwell’s eauations in the twisted

(9a)

coordinates and eliminate terms for the magnetic-field

components. After rather laborious, but straightforward,

calculations similar to those in [5], we obtain the following

three sets of simultaneous equations for the electric-field

components:

82Et ~ d2Et d2E, (32E1
_+kzE[_—– —

ay2 az2 8xaY axaz

[(

a2Et a2Et

)(

a2Ev aEq
—. —.

– a 2xayaz ‘axaz ‘3ZZZ-7Z )

(

a2Ec a2E{ aEf
+ Y—–

dX2 ‘WY – m 11
[( a2E$ a2Et

—a2 — X2—— —
ay2 ‘y axay

)

(

a2Eq a2Eq
+ X2— – )1axay ‘y% ‘0

d2Ew c32E, 82Ef a2E1
—+—
axz

+k2Ev– —–— ——
az2 axay ayaz

[(

a2Eq a2Eq

)(

a2Et aEt
—— —. __ _

+ a 2Y axaz x ayaz y ayaz az )

(

a2El a2E{ aEf
-t x—

ay2 –YWY– E )1
[( a2E

—cr2 — Y2 J – xY~
ax2 )

(

a2Et
+ Y2— –

)1
axay “~ ‘0

(9b)

a2E[ + a2El a2E6 a2Eq
— i- k2El – Jxaz aYJz— ——

C?X2 ayz

[(

a2E1 a2El

)(

a2Et aEt
—cl—— ——

x ayaz “axaz + ‘J.ZZ ‘2 ay )

(

a2E, aEq
–x——

azz ‘2 ax )1
[( a2Ec C32EC aEi

—ci2 — Y2—+X2—– —
ax2 ay2 x ax

aE( a2E[

“ay ‘2xyaxay )

( a%z %% -42
+ Y2— –

)

(

a2Ev a2Eq aEw
+ X2—– —–

ayaz ‘y axaz y az )1— =o (9C)

where kz = u2cp and o = 2rrf.

In the boundary conditions (8) as well as the simulta-

neous equations (9a) to (9c), if the twist constant a is put
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to zero, then these relations are naturally reduced to those

for straight waveguides. Keeping this nature in mind, and

{
: %’-;) (+-%ine

@(l)=j g2
paying attention to the form of fields for the dominant 0

TEI{, mode in the straight waveguide, we presume the

solutions of electric components in the perturbed form as

follows: .16 R msinmO

Et= a@~)exp ( – J3=.Z)

( )En= cos~ + a@$) exp ( – j&Z)

E{= a@~)exp ( – j&-Z) (lo)

where a is assumed to be a small quantity. Since the field

solutions of the first-order approximation are of interest,

the higher order terms are neglected here. The sign of a

cannot affect the phase constant &, as pointed out by

Lewin [1]. Thus, in the first approximation, we write

r&=l.j= k’-; (11)

where ~g is the unperturbed phase constant in the straight

wavcguide of the same cross section.

Considering the boundary conditions (8), we expand the

scalar functions Q?), Qr), and @~) in the form of the

double Fourier series

where a change of variables

(13)

has been made.

Substituting (10) together with (12) into (9a) to (9c),

equating the coefficients of a to zero, and integrating over

the cross section, we have three simultaneous equations for

the unknown coefficients A~~, B~l~, and C~~ which can be

solved in a straightforward manner.

The solutions obtained directly from these equations are

in the form of an infinite series with double summations as

in (“12). We transform these solutions into a more closed

form with the aid of partial fraction expansions, as well as

the formulas for Fourier series expansion.

Tlhis leads to the following results:

~mcOstd Cosh[”=(:’”l

“(m2-1)2 “ cosh ($~~)
I

+— L (JF=l)5~ ~= 2,4,...

[
()@jl)=~ d–~ sind+~ 5

resin m8
II

m=2,4,... (WZ2+2

(14)

where

@= ~b/2a

cm=1, for m = O,

and

cm = 2, form #O.

Although these functions include involved summation

terms, the series is found to be convergent so rapidly that

the first two terms (m = O,2) are sufficient for conventional

applications (0.4s b/as 0.5). Furthermore, these func-

tions have derivatives of all orders and the series is dif-

ferentiable term-by-term with respect to O and ~,

Substitution of (14) into (10) gives the covariant compo-

nents of the electric field in analytic form. Contravariant

components of the magnetic field can be derived by using

Maxwell’s equations

(15)

Up to this step, we obtained both the electric- and the

magnetic-field solutions that satisfy Maxwell’s equations to

the first approximation. So far, we have imposed the

boundary conditions only on the electric fields. However,

the magnetic-field components given in (15) automatically

satisfy their boundary conditions given in (8), because they
hold for perfectly conducting boundaries in general.

As shown in the elementary relations (7a) and (7b), the

electromagnetic fields obtained here have both electric and

magnetic axial components. Thus the dominant mode in

the twisted waveguide is found to be of the hybrid type as

mentioned before.
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The perturbed phase constant /3~ associated with the

dominant hybrid-mode wave can be obtained as the sec-

ond-order approximation based on these analytic field

solutions. It will be discussed later [7].

IV. MODAL SERIES EXPANSION

In order to clarify the hybrid-mode fields of (10) and

(15), we take the field patterns at Z= O, and transform

them into the expressions in Cartesian components by the

aid of (7a) and (7b). Next, we expand these components in

terms of the eigenfunctions of the straight waveguide as

follows:

EX=–
r ~ (~~O~lsin + + ~[0,1sin3~)

(

V[21]W21)
++ —

b )
cos20sin$+ “””

21 a

I__

2
Jq’= V[lo] ~ sin O

(

v (21) 2V[211
++ ~+y

)
sin28cos~+ 00-

21

EZ=-j:c :—. — fJ211(21)sin20 sin* + “ “ “

r~.. = – ~[lo] + sin 8

2 1(21)

- (-

21[21]
—

)

— sin2f3cos++ “ - “
U21b+a

HY=–
r ~ (~~o~lsint + ~[0,1sin3t)

(

21(21) 1[21]
++ —–—

b )
cos2@sin*+ . . .

21 a

l’rr
HZ=–-”–

r[
+ V[lO1Cos e + ;

JQC a

~(V[o,lcos + + 3V[031COS3+)

r+2a
~ U21V[211COS20COS* + .001 (16)

where

r

~ = ++?
21 a b“

The notations V and 1 with double subscripts are used as

the modal expansion coefficients, where brackets [ ] are

used for TE modes and parentheses ( ) are used for TM

modes.

The modal expansion coefficients can easily be de-

termined by means of a conventional technique for double

Fourier series expansion. The final results are listed in

Table I. As an example, the numerical values of the model

expansion coefficients in a normalized form are illustrated

in Fig. 2, where the cross-sectional dimensions a = 22.9

j 0,3

-j 0.1

~.
1,0 102 1,4 106 0 0

f/fc d

Fig. 2. The ratio of an individual modaf expansion coefficient to that of
a fundamental TEIO component as a function of normalized frequency,
where ~CIS the cutoff frequency in the straight Waveguide.

mm, b =10.2 mm, and the twist constant a = 900/5.7 cm

(normalized as ~ = aa/2m = 0.1) are assumed. The

frequency range is restricted in the region where only the

dominant mode can propagate.

It is easily shown that the first few terms of model

components, namely, TEIO, TEO1, TM21, TE21, and TE03,
yield a very good approximation to the hybrid-mode fields.

As a matter of course, the most significant contribution is

made by the fundamental TEIO components. This means

practically simultaneous rotation of the field pattern along

the twist is seen in the waveguide.

The contribution of the higher order modal components

are obtained from the calculation of modal power P,
given by

P,= R,(KI,*) (17)

where subscript i indicates the respective higher order

modes.

Fig. 3 shows the frequency dependence of the individual

modal power normalized with Ptlol calculated by using (17)

and Table I. A remarkable behavior of the cross-polarized

TEOI component is observed in the figure. The power

carried in this modal component varies from negative to

positive with increasing frequency. The minus sign of the

power accounts for, as known in general, the backward

wave property of the hybrid wave.
Because of this fact, there exists a specific frequency ~.

given by

?=m (18)

at which the power carried in the TEol-modal component

just vanishes.

The TEol-modal power also depends critically on the

waveguide aspect ratio b la as shown in Fiz. 4.
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Fig. 3. Frequency dependence of normalized power carried by an indi-
vidual modal component.
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Fig. 4. Effect of the ratio b/a on the frequen~y dependence of the
cross-polarized TEO1-modaf power.

TABLE I
MODAL EXPANSIONCOEFFICIENTSFORTHE DOMINANT HYBIUD

MODE

mode I 7

1 5-($)2 (5-2~) [12(:)2 -1]

T[21] = ja~—
9. ~

J- [1+3,+)’]

vi Ii
F=—

V[,o] ‘
T=—

1110] ‘
z=%, y=$, fo= Cut off frequency iII the

straight waveguide.

V. TWISTED STRIP LINE terms in the order of @2 may be enough for representation

of these functions.

The central portion of the twisted rectangular waveguide Then we have

may be considered as a twisted strip line if its wide walls

extend to infinity. Such a structure is useful in suggesting a ‘Os’[”=(:+-l)l=,,;;2(m2_1,,(,_m
physical picture of rather complicated hybrid fields in the

twisted rectangular waveguide. In this section, we shall
cosh ( o~= )

derive the expressions for the electromagnetic fields of
TEM type in the twisted strip line transformed from the ‘inh[”=($-’)l+r+z) (,,)
twisted waveguide. cosh ( @~=) 2“

Let us now return to (14) in Section III, and concentrate

our discussion on the hyperbolic functions, Let @be suffi- Equation (19) is valid for +~= <<1. Then we take
cientl y small such that the power series expansion up to the summations in (14) up to m = m’ after substitution of (19),
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where the value of m‘ is chosen so that the following

expansions may hold:

(20)

Thus under these approximations, we obtain the follow-

ing simplified expressions corresponding to (14):

Q~l)=-jBg[Y2-(:rISin0

‘f)=:[y’-wlcoso
(21)

If a twisted rectangular waveguide of a very flat cross

section (a >> b) is of interest, (21) gives a good approxima-

tion for the dominant-mode fields in such a structure.

Therefore, we consider a limiting case where the wide-

wall dimension a tends to infinity. Then, from (11) and

(13), we obtain

~g=k, 9=;. (22)

Substitution of (22) into (21) gives

~(l) = _ jkxy
v

(q) = (). (23)

Introducing (23) into (10) and (15), we finally obtain the

analytic expressions for the dominant-mode fields in the

twisted strip line as follows:

‘~=jak[(:Fy21exp’-’k(z+axy)’
Eq=exp[– jk(Z+aXY)]

E{=O

H(=O (24)

where the terms in the order of a2 are neglected and

(25)

Z + aXY = const,

Fig. 5. A propeller-like equiphase surface for the hybrid-mode in a
twisted strip line.

In these expressions, the electric and the magnetic fields

are represented in terms of the covariant components,

respectively.

Since

at-av= – (X2XY (26)

it is understood that Eg and E? (hence, HE and Hn ) are

perpendicular to each other in the sense of the first-order

approximation.

From (24), the equation for equiphase surfaces of the

waves propagating in a positive Z-direction is given by

Z + aXY = constant. (27)

One example of a propeller-like equiphase surface is

illustratively shown in Fig. 5.

VI. CONCLUSIONS

An exact formulation of the boundary conditions has

been given for the perfectly conducting surfaces in a

helicoidal shape. By using these rigorous boundary condi-

tions, the first-order perturbational solutions have been

obtained for the dominant hybrid-mode fields.

The electric and the magnetic-field patterns have been

studied by means of modal analysis. lt is confirmed that

the simultaneous rotation of the field pattern along the

twisted surface is predominantly seen for the fundamental

TElo-modal component.

Special attention has been given to the backward wave

property of the cross-polarized TEOI component. lt is

shown that the modal power for a TEOI component vanishes

at a certain frequency within the available range. This

means that satisfactory matching between the twisted and

the straight waveguides would be expected in the neighbor-

hood of this frequency.

The fields in a twisted strip line have also been discussed

as the limiting case of the rectangular waveguide. One can

easily grasp the physical aspect of the hybrid-mode field by

the aid of the propeller-like equiphase surface presented in

this paper.
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2–20-GHz GaAs Traveling-Wave Amplifier
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,4s,tract —Skgle-stage and two-stage GaAs traveling-wave amplifiers
operating with flat gain responses in the 2-20-GHz freqnency range are
described. The circuits are realized in monolithic form on a O.1-mm GaAs
substrate with 50- Q input and output lines. Complete gate and drain dc bias

circuitry is included on the chip. By cascading these amplifier chips, a

30-dB gain in the 2-20-GHz range is demonstrated, with 9+ l-dB noise
figure,
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I. INTRODUCTION

I N DISTRIBUTED OR traveling-wave amplifiers, the

input and output capacitances of electron tubes or tran-

sistors are combined with inductors to form two lumped-

element artificial transmission lines, These lines are cou-

pled by the transconductance of the active devices [1]-[4].

In this work, we describe one-stage and two-stage travel-
iruz-wave amplifiers which operate in the 2–20-GHz

fr~quency rm~e [5]. The

the gate and drain lines

lines loaded periodically

amplifiers are truly distributed;

are

by

two microstrip- transmission

GaAs FET cells. The basic
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