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An Analysis of a Hybrid-Mode in a Twisted
Rectangular Waveguide

HATSUO YABE, MEMBER, IEEE, AND YASUTO MUSHIAKE, FELLOW, IEEE

Abstract — Analytic expressions of electromagnetic fields for the domi-
nant hybrid-mode in a twisted rectangular waveguide are obtained. The
fields exactly satisfy the boundary conditions on the guide walls in a
helicoidlal shape. o

By expanding these expressions for the fields in terms of the eigenfunc-
tions of a straight waveguide, the hybrid-mode is found to be composed of a
fundamental TE4-mode component, accompanied with TE o;, TM 21> TEgy,
and TE y; modes, as successive higher order components. The result of the
modal power calculation reveals that there exists a frequency at which the
transmitting power carried in the cross-polarized TEj-mode component
just vanishes. ‘ '

As a limiting case of the twisted waveguide, fields in a twisted strip line
are discussed also, and the existence of a propeller-like equiphase surface
is shown.

I. INTRODUCTION

N 1955, Lewin [1] published a paper on the analysis of

the twisted waveguides and, more recently, he also
discussed the degeneracy problem in twisted square wave-
guides [2]. Although the first-order field expansion was
obtained in the process of Lewin’s work [1]-[4], the electro-
magnetic fields were assumed to be of the TE-mode type
whose electric field lies entirely on the plane perpendicular
to the guide axis. It should be mentioned, however, that the
TE-mode fields do not exactly satisfy all the boundary
conditions throughout the perfectly conducting guidewall
surfaces in helicoidal shape.

This paper is concerned with a boundary value problem
of the twisted waveguide. The exact boundary conditions,
in terms of the local oblique base vectors, are presented in
Section II. The analytic expressions for hybrid-mode fields
that exactly satisfy the boundary conditions are given in
Section III. The dominant-mode fields of the hybrid type
obtained here are rather involved. The mode fields are
expanded in the form of a modal series in Section IV.
Furthermore, electromagnetic fields in a twisted strip line
are also discussed in Section V as a limiting case of the
twisted rectangular waveguide.

II. BounDARY CONDITIONS

A uniformly twisted rectangular waveguide in fixed
Cartesian coordinates (x, y, and z) is illustrated in Fig,
1(a). Focusing our attention on the helicoidal wall surfaces,
we intend to find the equations for these boundary surfaces
as simply as possible mathematically. We introduce here
the twisted coordinates (X, Y, and Z) in which axes X and
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Fig. 1. Twisted rectangular waveguide and coordinate systems. (a)
Twisted coordinates (X, Y, and Z) and fixed Cartesian coordinates (x,
v, and z) having the same origin 0. (b) Local oblique base vectors at a
point P. .

Y rotate simultaneously with the rotation of the cross
section. They are related to the fixed Cartesian coordinates
by the equations )

X=xcosaz + ysinaz
Y= - xsinaz + ycosaz
Z=z (1)

where « is called the twist constant in rad/m [5]. In terms
of the twisted coordinates, the four helicoidal surfaces can
be expressed in simpler form

X=4 g—, for narrow walls
2 Lk

)

where a and b are cross-sectional dimensions of wide and
narrow walls, respectively.

Fig. 1(b) shows two sets of the local oblique base vectors
known as the unitary and the reciprocal unitary vectors
associated with the point P. The unitary (ay, ay, and a )
are related to the unit vectors (i, j, and k) of the Cartesian

Y=+= for wide walls
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coordinate system by

a,=icosaz + jsinaz

ay = —isinaz + jcosaz
3)
It must be noted that the unitary vectors are not neces-
sarily of unit length (6], as in the case of a, in (3). The

reciprocal unitary vectors (a;, a,, and a;) are defined in
order that the following orthogonality relations may hold:

a,=—ayitaxj+k.

a.=ayXay, ay=a,Xa;

a,=azXay ay=a;Xa;

(4)

Let the guide walls be of infinite conductivity. Then, the
electric- and magnetic-field vectors E and H must satisfy
the following boundary conditions:

EXa§=O H'a£=0,
EXa,=0 H-a,=0,

ag___axxay aZ=a£Xan.

for narrow walls

()

where the base vectors a, and a, are, respectively, per-
pendicular to the narrow- and wide-wall surfaces.

In order to obtain more convenient expressions of these
boundary conditions, we resolve the vector E into its
covariant components ( E;, E,, and E;), and the vector H
into its contravariant components (Hy, Hy, and H,).

Then we have

E= Egaf + Enan + Eg'a{

for wide walls

(6)
and they are also related to the Cartesian components by
the following equations:

H=Hya,+Hya,+ Hya,

E;=E,cosaz + E sinaz

E =~ Essinaz+ E, cosaz

E;=~ayE +oxE,+E, (7a)
Hy=H.cosaz + H,sinaz + aVH,

Hy=—H, sinaz+ H,cosaz — a XH,

H,=H,. (7v)

Substituting (6) into (5), we can finally obtain the
boundary conditions in terms of the field components as
follows:

. Hy=0, forX=+

S NS TE

for Y=15. (8)

It must be noted here that the field components in these
expressions are represented on the basis of the local ob-
lique base vectors, and E, and H, components do not
vanish on the guide walls.

E§=E§=O HY=O,

I11.

In order to obtain the field solutions for twisted wave-
guides of a hybrid type, we start from Maxwell’s equations.
At first, we express Maxwell’s equations in the twisted

PERTURBATIONAL-FIELD SOLUTIONS

coordinates and eliminate terms for the magnetic-field
components. After rather laborious, but straightforward,
calculations similar to those in [5], we obtain the following
three sets of simultaneous equations for the electric-field
components:

0*E, 0B, ,  9E, 3
+——+k*E; - T e
Y?  9z2 X9y 0XdZ
d°E, I’E, J’E, JE,
~ |\ ¥ 9vaz ’Yaxaz)_(xaxaz Y
0B, B, OE
HY— - X -
ax2 Xy 3dvy

2 2
—a2[-(Xza ES_XY 3’E, )

aY? axay
X? L, XYazE" 0 9
1A Fxay ax2 (%)
I°E, 9’E, . 3’E,  9’E,
ax2  azz TN BT Gxey T vez
P [ I’E, X d’E, v I’E;  JE,
N\ 9x9z " “evaz | amz“?i‘z’)
N XaZEI_Y O°E,  OE;
ay? axdy dx
0’E, 9%E,
o2 2 n_ ki
a[ Y X XY&XBY)
+|r? O°E, XY62E5 0 9b
IXaY vzl (9b)
*E, 9’E 3’E, d°E,
ax?  ay? dXdzZ 9Y9Z
X I*E; . IE; Y32E$ JE,
e\ Xavaz  Yaxez |\ Vo2 Tt aw
(5P,
372 ax
8°E, 8°F, E,
_ 2l _1y2 § 2 S T Y
a{ (Y ———_BX2+X——8Y2 X
JE; 5 92E;
Yoy T2 XY 555y
, 0 . I°E; JIE,
Yo%z aYaZ_XTiz“)
o 9’E, X 3’E, YaE,,
WX %70z~ Y oxaz —a‘f) =0 (%)

where k% = w’ep and w = 27f.
In the boundary conditions (8) as well as the simulta-
neous equations (9a) to (9c), if the twist constant « is put
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to zero, then these relations are naturally reduced to those
for straight waveguides. Keeping this nature in mind, and
paying attention to the form of fields for the dominant
TE,, mode in the straight waveguide, we presume the
solutions of electric components in the perturbed form as
follows:

E;=a®Vexp(— jBrZ)
E, = (cos %( + a@,gl)) exp(— jBrZ)

E; = ad0 exp(~ jB;Z) (10)

where a is assumed to be a small quantity. Since the field
solutions of the first-order approximation are of interest,
the higher order terms are neglected here. The sign of «
cannot affect the phase constant 87, as pointed out by
Lewin [1}. Thus, in the first approximation, we write

)

BT=Bg= kz__z (11)
a

where B, is the unperturbed phase constant in the straight

waveguide of the same cross section.

Considering the boundary conditions (8), we expand the
scalar functions ®fY, ®, and ®{V in the form of the
double Fourier series

o) = AL cosmbsin ny

On=90

S?MS
8 18

1 _ D
o= Y Y Blsinmfcosny

m=0n=0
o o0
P = 3 3 COsinmbsinny (12)
m=0n=0
where a change of variables
0=£(X+£), Ol
a 2
T b
¢—3(Y+§), O<y<m (13)

has been made.

Substituting (10) together with (12) into (9a) to (9c),
equating the coefficients of a to zero, and integrating over
the cross section, we have three simultaneous equations for
the unknown coefficients 4D, BY and C) which can be
solved in a straightforward manner.

The solutions obtained directly from these equations are
in the form of an infinite series with double summations as
in (12). We transform these solutions into a more closed
form with the aid of partial fraction expansions, as well as
the formulas for Fourier series expansion.

This leads to the following results:

2 [+
a
¢§1)=j‘8g2 (0—er—)cos(z"——sinﬁ-l—i 3
T ‘Tl’m=0,2,._.

[ =1 (24 1)
cosh(qn/m_z;T)

e cosml cosh
(m?~1)°

67

Bya* | b T T .
q,?gl)=];;—2— ;(0—5)(4/—5)sm0

msin mé
T om=24,- ( mz—l)5

sinh[¢\/m(%¢~1)]
. cosh(qb\/m)

. 8 msin mé
o=2/(g-I)sing+> Yy M
C ( 2) LA (m2—1)2

cosh{@/m2 -1 (%xp —1)]
cosh(<1>\/m2 -1 ) (14)

where

¢=mb/2a

€,~1, form=0,
and

€,=2, for m # 0.

Although these functions include involved summation
terms, the series is found to be convergent so rapidly that .
the first two terms (m = 0,2) are sufficient for conventional
applications (0.4 < b/a <0.5). Furthermore, these func-
tions have derivatives of all orders and the series is dif-
ferentiable term-by-term with respect to 6 and .

Substitution of (14) into (10) gives the covariant compo-
nents of the electric field in analytic form. Contravariant
components of the magnetic field can be derived by using
Maxwell’s equations

1 (9E, JE,
X"W(W_ﬁ)

1 (0E; OE,
Y _7‘«7@(8—2_%)

1 (0E, OE;
i ok (1)

Up to this step, we obtained both the electric- and the
magnetic-field solutions that satisfy Maxwell’s equations to
the first approximation. So far, we have imposed the
boundary conditions only on the electric fields. However,
the magnetic-field components given in (15) automatically
satisfy their boundary conditions given in (8), because they
hold for perfectly conducting boundaries in general.

As shown in the elementary relations (7a) and (7b), the
electromagnetic fields obtained here have both electric and
magnetic axial components. Thus the dominant mode in
the twisted waveguide is found to be of the hybrid type as
mentioned before.
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The perturbed phase constant B, associated with the
dominant hybrid-mode wave can be obtained as the sec-
ond-order approximation based on these analytic field
solutions. It will be discussed later [7].

IV. MobDAL SERIES EXPANSION

In order to clarify the hybrid-mode fields of (10) and
(15), we take the field patterns at Z=0, and transform
them into the expressions in Cartesian components by the
aid of (7a) and (7b). Next, we expand these components in
terms of the eigenfunctions of the straight waveguide as
follows:

2 . .
E.,=— - (V[m]smgb + V[O3151n3zp)

2V V.,
i(ﬁ_ﬂ)coszasmw
Un

a b
[ 2 .
E)’ = 17[10] 'EE Slno

Vv 2V
Ui(%+—éz—l—])sin20c:os¢+ e
21
2 . .
E, =~ 73? . ;;)1(/21[(21)51n205m¢ + e

[ 2 .

I 21
- 7221 (%1—2 + %)sinwcosqz + -
2 . .
2 21(21) 1[21] .
721—(—5— T)COSZﬂSle{x-F

1 o /2 a

-(Vigyycos ¢ + 3V gy c083¢)

+ % Uy Vioycos28cosy + - -
(16)
where
4b a
U21 = —a— + 3 .

The notations V and I with double subscripts are used as
the modal expansion coefficients, where brackets [ ] are
used for TE modes and parentheses ( ) are used for TM
modes.

The modal expansion coefficients can easily be de-
termined by means of a conventional technique for double
Fourier series expansion. The final results are listed in
Table 1. As an example, the numerical values of the model
expansion coefficients in a normalized form are illustrated
in Fig. 2, where the cross-sectional dimensions a =22.9

j 0.3 ™ 1 T T 1 T T T f
\
\
\ _
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I jo2f \ a K] .
AY
AY
- . -
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~ N
= jOlf N A -
~ \
- . R _ _
g T¥rae Ty Vew
£ Tosm SSZ2=-- -
z 3 T NT-IZITLT
N
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Fig. 2. The ratio of an individual modal expansion coefficient to that of
a fundamental TE;, component as a function of normalized frequency,
where f, 1s the cutoff frequency in the straight waveguide.

mm, »=10.2 mm, and the twist constant a=90°/5.7 cm
(normalized as &= aa/2w = 0.1) are assumed. The
frequency range is restricted in the region where only the
dominant mode can propagate.

It is easily shown that the first few terms of model
components, namely, TE,,, TEy;, TM,;, TE,;, and TE;,
yield a very good approximation to the hybrid-mode fields.
As a matter of course, the most significant contribution is
made by the fundamental TE,, components. This means
practically simultaneous rotation of the field pattern along
the twist is seen in the waveguide.

The contribution of the higher order modal components
are obtained from the calculation of modal power P,
given by

P,=R(V,I*) (17)

where subscript i/ indicates the respective higher order
modes.

Fig. 3 shows the frequency dependence of the individuat
modal power normalized with Py, calculated by using (17)
and Table I. A remarkable behavior of the cross-polarized
TE; component is observed in the figure. The power
carried in this modal component varies from negative to
positive with increasing frequency. The minus sign of the
power accounts for, as known in general, the backward
wave property of the hybrid wave.

Because of this fact, there exists a specific frequency f

given by
%= %[(%)24—1} (18)

at which the power carried in the TE;-modal component
just vanishes.

The TE -modal power also depends critically on the
waveguide aspect ratio b/a as shown in Fig. 4.
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Fig. 3. Frequency dependence of normalized power carried by an indi-
vidual modal component.
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Fig. 4. Effect of the ratio b/a on the frequency dependence of the’
cross-polarized TE,-modal power.

TABLE I
MobDAL ExpaNSION COEFFICIENTS FOR THE DOMINANT HYBRID
MODE.

mode v T

— / - B,
TE 10 Vie = 1 ( Viw} = %li‘ ) Ipoy = 1 (I[W] -4 jab

2 my kgL - 6 1 1‘(%)2(2?2' D

S — b 1 T

TEq Vo) ja 2 -1 (a) - (_Za7_)2 [01] ja T2 r——?z_l 1_<7217__)2
_ 9 -2y -1
TE Vies] = ) T[o3) = jo 162 L 2 )
=y S

i - 572 12¢2y -1 _ _16,- L s-ErGa12ckra)

TE2 Via) = == /T ( Ia] = /_
/1+4(%)2 [1+3¢27) /1442 [1+3¢&

_ b

T™a | V(a) =-30 6[“/—/ (—) > L > Ty = “',_ f (G
2
/1“‘(2‘)2[1*3(?)] /1+4( 1+3(
V. I,
— i =3 7 - aa 3 f
14 = N a4 = -5, f ==, f. = cut off frequency in the
Vi) T zm fc straight waveguide.
. 2 .
V. TWISTED STRIP LINE terms in the order of ¢> may be enough for representation

The central portion of the twisted rectangular waveguide
may be considered as a twisted strip line if its wide walls
extend to infinity. Such a structure is useful in suggesting a
physical picture of rather complicated hybrid fields in the
twisted rectangular waveguide. In this section, we shall
derive the expressions for the electromagnetic fields of
TEM type in the twisted strip line transformed from the
twisted waveguide.

Let us now return to (14) in Section III, and concentrate
our discussion on the hyperbolic functions. Let ¢ be suffi-
ciently small such that the power series expansion up to the

of these functions.
Then we have

:N%Z——l(%xp—
cosh (gVm? —1)
_qm/m(;z;tla—
;:osh(m/mT—T)

Equation (19) is valid for ¢ym? —1 < 1. Then we take
summations in (14) up to m = m’ after substitution of (19),

cosh

|, e,
=1+ (m? =Dy (¢ =)

sinh

K

2

m2—1(¢ ) (19)
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where the value of m’ is chosen so that the following
expansions may hold:

m ]
4 > e'”cosm2=sin0—(0—g)cos¢9
Tm=02-- (m*—1)
2 m €,,cos mé .
= > —sinf
m=0,2, m-—
m’ .
8 msmm02 —(6’—%>sin0
T m=24,--- (m?—1)
4 " msin mo
— ——— =cosé. 20
'77,,,=2§,... m?—1 (20

Thus under these approximations, we obtain the follow-
ing simplified expressions corresponding to (14):

2
o = _jﬁg[yz —(%) ]sin0
oM = — jB, XVsin0
2
@él):g[yz—(g) ]cosﬂ. (21)

If a twisted rectangular waveguide of a very flat cross
section (a > b) is of interest, (21) gives a good approxima-
tion for the dominant-mode fields in such a structure.

Therefore, we consider a limiting case where the wide-
wall dimension a tends to infinity. Then, from (11) and

(13), we obtain
B, =k, (22)

Substitution of (22) into (21) gives
1 ; b g 2
op = | (3] -¥ ]
" = — jkXY

o =0. (23)

Introducing (23) into (10) and (15), we finally obtain the
analytic expressions for the dominant-mode fields in the
twisted strip line as follows:

E, = jak[(—g)z—— YZ] exp[— jk(Z+ aXY)]

E,=exp[— jk(Z+aXY)]

T
0—5.

E§ -
1
HE - 'g,_OEn
1

H =—E

n §0 £
Hy= (24)

where the terms in the order of a? are neglected and
o=y % - (25)

Z +aXY = const.

Fig. 5. A propeller-like equiphase surface for the hybrid-mode in a
twisted strip line.

In these expressions, the electric and the magnetic fields
are represented in terms of the covariant components,
respectively.

Since

(26)
it is understood that E, and E, (hence, H; and H,) are
perpendicular to each other in the sense of the first-order
approximation.
From (24), the equation for equiphase surfaces of the
waves propagating in a positive Z-direction is given by
Z + aXY = constant. (27)

One example of a propeller-like equiphase surface is
illustratively shown in Fig,. 5.

a;-a,=—a’Xy

V1. CONCLUSIONS

An exact formulation of the boundary conditions has
been given for the perfectly conducting surfaces in a
helicoidal shape. By using these rigorous boundary condi-
tions, the first-order perturbational solutions have been
obtained for the dominant hybrid-mode fields.

The electric and the magnetic-field patterns have been
studied by means of modal analysis. It is confirmed that
the simultaneous rotation of the field pattern along the
twisted surface is predominantly seen for the fundamental
TE,,-modal component.

Special attention has been given to the backward wave
property of the cross-polarized TE,;, component. It is
shown that the modal power for a TE,; component vanishes
at a certain frequency within the available range. This
means that satisfactory matching between the twisted and
the straight waveguides would be expected in the neighbor-
hood of this frequency.

The fields in a twisted strip line have also been discussed
as the limiting case of the rectangular waveguide. One can
easily grasp the physical aspect of the hybrid-mode field by
the aid of the propeller-like equiphase surface presented in
this paper.
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Abstract —Single-stage and two-stage GaAs traveling-wave amplifiers
operating with flat gain responses in the 2-20-GHz frequency range are
described. The circuits are realized in monolithic form on a 0.1-mm GaAs
substrate with 50-& input and output lines. Complete gate and drain dc bias
circuitry is included on the chip. By cascading these amplifier chips, a
30-dB gain in the 2-20-GHz range is demonstrated, with 9+ 1-dB noise
figure.
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I. INTRODUCTION

N DISTRIBUTED OR traveling-wave amplifiers, the

input and output capacitances of electron tubes or tran-
sistors are combined with inductors to form two lumped-
element artificial transmission lines. These lines are cou-
pled by the transconductance of the active devices [1]-[4].

In this work, we describe one-stage and two-stage travel-
ing-wave amplifiers which operate' in the  2-20-GHz
frequency range [5]. The amplifiers are truly distributed;
the gate and drain lines are two microstrip transmission
lines loaded periodically by GaAs FET cells. The basic
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